关于OpenCV的stitching使用
配置环境:VS2010+OpenCV2.4.9
为了使用 OpenCV 实现图像拼接头痛了好长时间,一直都没时间做,今天下定决心去实现基本的图像拼接。
首先,看一看使用 OpenCV 进行拼接的方法
基本都是用 Stitcher 类中的 stitch 方法。下面是网上的代码,同时也是 opencv\samples\cpp\stitching.cpp 的代码。
#include
#include
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp"
using namespace std;
using namespace cv;
bool try_use_gpu = false;
vector imgs;
string result_name = "result.jpg";
void printUsage();
int parseCmdArgs(int argc, char** argv);
int main(int argc, char* argv[])
{
int retval = parseCmdArgs(argc, argv);
if (retval) return -1;
Mat pano;
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano);
if (status != Stitcher::OK)
{
cout << "Can't stitch images, error code = " << int(status) << endl;
return -1;
}
imwrite(result_name, pano);
return 0;
}
void printUsage()
{
cout <<
"Rotation model images stitcher.\n\n"
"stitching img1 img2 [...imgN]\n\n"
"Flags:\n"
" --try_use_gpu (yes|no)\n"
" Try to use GPU. The default value is 'no'. All default values\n"
" are for CPU mode.\n"
" --output \n"
" The default is 'result.jpg'.\n";
}
int parseCmdArgs(int argc, char** argv)
{
if (argc == 1)
{
printUsage();
return -1;
}
for (int i = 1; i < argc; ++i)
{
if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
{
printUsage();
return -1;
}
else if (string(argv[i]) == "--try_use_gpu")
{
if (string(argv[i + 1]) == "no")
try_use_gpu = false;
else if (string(argv[i + 1]) == "yes")
try_use_gpu = true;
else
{
cout << "Bad --try_use_gpu flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--output")
{
result_name = argv[i + 1];
i++;
}
else
{
Mat img = imread(argv[i]);
if (img.empty())
{
cout << "Can't read image '" << argv[i] << "'\n";
return -1;
}
imgs.push_back(img);
}
}
return 0;
}
感觉这个说的比较繁琐,我就改写成了下面的代码
#include
#include
#include
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/stitcher.hpp"
#include
using namespace std;
using namespace cv;
bool try_use_gpu = false;
vector imgs;
string result_name = "result.jpg";
int main()
{
Mat img1=imread("1.jpg");
Mat img2=imread("2.jpg");
imgs.push_back(img1);
imgs.push_back(img2);
Mat pano;
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano);
if (status != Stitcher::OK)
{
cout << "Can't stitch images, error code = " << status << endl;
return -1;
}
namedWindow(result_name);
imshow(result_name,pano);
imwrite(result_name,pano);
waitKey();
return 0;
}
下面看一下原图和效果图,(以四张原图为例,分为左上,右上,左下,右下)
效果图如下:
可以发现代码中最关键的两句就是:
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano);
Stitcher 是 OpenCV 的一个类,下面看一下这个类的源代码:
class CV_EXPORTS Stitcher
{
public:
enum { ORIG_RESOL = -1 };
enum Status { OK, ERR_NEED_MORE_IMGS };
// Creates stitcher with default parameters
static Stitcher createDefault(bool try_use_gpu = false);
Status estimateTransform(InputArray images);
Status estimateTransform(InputArray images, const std::vector > &rois);
Status composePanorama(OutputArray pano);
Status composePanorama(InputArray images, OutputArray pano);
Status stitch(InputArray images, OutputArray pano);
Status stitch(InputArray images, const std::vector > &rois, OutputArray pano);
double registrationResol() const { return registr_resol_; }
void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; }
double seamEstimationResol() const { return seam_est_resol_; }
void setSeamEstimationResol(double resol_mpx) { seam_est_resol_ = resol_mpx; }
double compositingResol() const { return compose_resol_; }
void setCompositingResol(double resol_mpx) { compose_resol_ = resol_mpx; }
double panoConfidenceThresh() const { return conf_thresh_; }
void setPanoConfidenceThresh(double conf_thresh) { conf_thresh_ = conf_thresh; }
bool waveCorrection() const { return do_wave_correct_; }
void setWaveCorrection(bool flag) { do_wave_correct_ = flag; }
detail::WaveCorrectKind waveCorrectKind() const { return wave_correct_kind_; }
void setWaveCorrectKind(detail::WaveCorrectKind kind) { wave_correct_kind_ = kind; }
Ptr featuresFinder() { return features_finder_; }
const Ptr featuresFinder() const { return features_finder_; }
void setFeaturesFinder(Ptr features_finder)
{ features_finder_ = features_finder; }
Ptr featuresMatcher() { return features_matcher_; }
const Ptr featuresMatcher() const { return features_matcher_; }
void setFeaturesMatcher(Ptr features_matcher)
{ features_matcher_ = features_matcher; }
const cv::Mat& matchingMask() const { return matching_mask_; }
void setMatchingMask(const cv::Mat &mask)
{
CV_Assert(mask.type() == CV_8U && mask.cols == mask.rows);
matching_mask_ = mask.clone();
}
Ptr bundleAdjuster() { return bundle_adjuster_; }
const Ptr bundleAdjuster() const { return bundle_adjuster_; }
void setBundleAdjuster(Ptr bundle_adjuster)
{ bundle_adjuster_ = bundle_adjuster; }
Ptr warper() { return warper_; }
const Ptr warper() const { return warper_; }
void setWarper(Ptr warper) { warper_ = warper; }
Ptr exposureCompensator() { return exposure_comp_; }
const Ptr exposureCompensator() const { return exposure_comp_; }
void setExposureCompensator(Ptr exposure_comp)
{ exposure_comp_ = exposure_comp; }
Ptr seamFinder() { return seam_finder_; }
const Ptr seamFinder() const { return seam_finder_; }
void setSeamFinder(Ptr seam_finder) { seam_finder_ = seam_finder; }
Ptr blender() { return blender_; }
const Ptr blender() const { return blender_; }
void setBlender(Ptr blender) { blender_ = blender; }
private:
/* hidden */
};
可以看到 Stitcher 大致有这些成员函数:createDefault,estimateTransform,composePanorama,stitch 等等。
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);这句话表示使用默认参数创建Stitcher类的对象stitcher,try_use_gpu表示是否打开GPU,默认不打开,即try_use_gpu=false;下面是这个函数的原型:
C++: Stitcher Stitcher::createDefault(bool try_use_gpu=false)
参数:Flag indicating whether GPU should be used whenever it’s possible.
return:Stitcher class instance.(即创建了一个对象)
Stitcher::Status status = stitcher.stitch(imgs, pano);这句话表示:try to stitch the given images
C++: Status Stitcher::stitch(InputArray images, OutputArray pano)
C++: Status Stitcher::stitch(InputArray images, const std::vector>& rois, OutputArray pano)
参数:images – Input images.
rois – Region of interest rectangles.(感兴趣区)
pano – Final pano.
return:Status code.(数据成员中枚举数组的一项)
Stitcher::estimateTransform 和 Stitcher::composePanorama 的使用为高级使用,需要清楚Stitching pipeline 的过程。
下面贴出 pipeline:
可以看出这个过程很复杂,需要涉及到很多的算法,比如:特征点的提取、特征点匹配、图像融合等等。这些过程 OpenCV 都为我们封装在 Stitcher 类中,不在此细述。
总结
虽然用 OpenCV 中的 Stitcher 类实现了基本的拼接,但是有一个最大的问题是,运行的效率是极低的,就这个代码中,拼接 3 张图片差不多用了一分钟,这在需要做实时拼接的时候是根本不可能使用的,所以后面需要做的工作任然是弄清楚 Stitching pipeline 的详细过程,进一步优化代码,提高拼接运行效率。
下面贴出参考资料:
http://docs.opencv.org/2.4.2/modules/stitching/doc/high_level.html
下面贴出源代码和 OpenCV 中的 stiching.cpp 和 stitching_detailed.cpp 的下载地址:
http://download.csdn.net/detail/u013637931/8255767